Input validation
RunPod's validator utility ensures robust execution of serverless workers by validating input data against a defined schema.
To use it, import the following to your Python file:
from runpod.serverless.utils.rp_validator import validate
The validate
function takes two arguments:
- the input data
- the schema to validate against
Schema Definition
Define your schema as a nested dictionary with these possible rules for each input:
required
(default:False
): Marks the type as required.default
(default:None
): Default value if input is not provided.type
(required): Expected input type.constraints
(optional): for example, a lambda function returningtrue
orfalse
.
Example Usage
import runpod
from runpod.serverless.utils.rp_validator import validate
schema = {
"text": {
"type": str,
"required": True,
},
"max_length": {
"type": int,
"required": False,
"default": 100,
"constraints": lambda x: x > 0,
},
}
def handler(event):
try:
validated_input = validate(event["input"], schema)
if "errors" in validated_input:
return {"error": validated_input["errors"]}
text = validated_input["validated_input"]["text"]
max_length = validated_input["validated_input"]["max_length"]
result = text[:max_length]
return {"output": result}
except Exception as e:
return {"error": str(e)}
runpod.serverless.start({"handler": handler})
Testing
Save as your_handler.py
and test using:
- Command
- JSON
python your_handler.py
Or with inline input:
python your_handler.py --test_input '{"input": {"text": "Hello, world!", "max_length": 5}}'
Create test_input.json
:
{
"input": {
"text": "The quick brown fox jumps over the lazy dog",
"max_length": 50
}
}
This approach allows early detection of input errors, preventing issues from unexpected or malformed inputs.